Чем грозит дефицит магния для здоровья
В последние годы пристальное внимание исследователей в различных областях клинической медицины привлечено к проблеме дефицита магния и его роли в формировании различных патологических состояний и патологических процессов человеческого организма.
Нормальный уровень магния в организме человека признан основополагающей константой, контролирующей здоровье человека. Среди катионов, присутствующих в организме человека, магний(Mg2+) по концентрации занимает четвертое место, а внутри клетки – второе после калия среди других катионов (калий, натрий, кальций).
У человека распределение запасов магния имеет свои особенности: около 60% от общего содержания магния находится в костной ткани, дентине и эмали зубов; 20% – в тканях с высокойметаболической активностью (сердце, мышечные клетки, печень, надпочечники, почки); 20% – в мозге и нервной ткани; и всего лишь 0,3% приходится на плазму крови
Установлено, что 90% магниевых ионов сконцентрировано внутри клеток в форме фосфатной связи – «Mg2+ - АТФ» (30% в митохондриях, 50% в цитозоле, 10% в ядре клетки) и только 10% от общего количества магния в организме человека находится вне клеток.
В настоящее время установлено наличие более 290 генов и белковых соединений в последовательности генома человека, которые способны связывать Mg2+ как ко–фактор множества ферментов, участвующих более чем в 300 внутриклеточных биохимических реакциях. Mg2+ – естественный физиологический антагонист Са2+; универсальный регулятор биохимических и физиологических процессов в организме, обеспечивает гидролиз АТФ, ингибируя разобщение окисления и фосфорилирование; регулирует гликолиз, накопление лактата; способствует фиксации К+ в клетках, обеспечивая поляризацию клеточных мембран, контролирует спонтанную электрическую активность нервной ткани и проводящей системы сердца; контролирует нормальное функционирование кардиомиоцита на всех уровнях клеточных и субклеточных структур, являясь универсальным кардиопротектором.
Магний необходим для нормального протекания множества биохимических реакций и физиологических процессов, которые обеспечивают энергетику и функции различных органов, что определяет его ведущую роль в обеспечении системного функционирования и позволяет рассматривать его как важнейший регулирующий фактор жизнедеятельности организма человека.
Ионы Mg2+ способны образовывать обратимые хелатоподобные соединения с органическими веществами, обеспечивая возможность их участия в разнообразных биохимических реакциях, активируя более чем 300 ферментов. В роли ко–фактора он принимает участие во многих ферментативных процессах, в частности, в гликолизе и гидролитическом расщеплении АТФ. Находясь в комплексах с АТФ, Mg2+ обеспечивает высвобождение энергии через активность Mg2+–зависимых АТФаз. Согласно закону единообразия действия Mg2+, контролируя АТФ–зависимые реакции, является необходимым элементом практически для всех внутриклеточных энергообразующих и энергопотребляющих процессов различных органов и систем человеческого организма.
В качестве ко–фактора пируватдегидрогеназного комплекса Mg2+ обеспечивает поступление продуктов гликолиза в цикл Кребса и этим препятствует накоплению лактата. Некоторые реакции самого цикла (например, превращения цитрата и a–глутарата) также находятся под контролем Mg2+. Трудно переоценить роль Mg2+ в анаболических процессах: он участвует в синтезе и распаде нуклеиновых кислот, синтезе белков, жирных кислот и липидов, в частности, фосфолипидов, контролирует синтез циклической АМФ.
Mg2+ является естественным физиологическим антагонистом ионов кальция (Са2+), конкурирующим с ними (в отличие от блокаторов быстрых и медленных кальциевых каналов) не только в структуре клеточной мембраны, но и на всех уровнях внутриклеточной системы. В мышечной клетке Mg2+ сдерживает «тригерный» вход Са2+ внутрь клетки, вызывающий сокращение миофибрилл, не только путем конкуренции на каналах сарколеммы, но и непосредственно вытесняет его из связи с тропонином С, контролируя сократительное состояние кардиомиоцита. На подобной конкуренции основано подавление и других инициированных Са2+ реакций в нервной и эндокринной системах.
При изменении внутриклеточного соотношения Са2+/Mg2+ и преобладании Са2+ происходит активация Са2+–чувствительных протеаз и липаз, приводящих к повреждению мембран. Благодаря антагонизму с Са2+ Mg2+ выступает как мембрано– и цитопротективный фактор. Аналогичным механизмом обусловлена и способность Mg2+ уменьшать разобщение внутриклеточного «дыхания» и окислительного фосфорилирования в митохондриях и потребность клетки в кислороде, вследствие чего уменьшаются непроизводительные потери энергии в виде тепла, увеличивается КПД синтеза АТФ
Mg2+ способствует уменьшению Са2+–зависимой передачи импульса в нервных окончаниях, препятствуя высвобождению медиаторов пресинаптической мембраной, активируя обратный захват. Так, в адренергических синапсах он обеспечивает инактивацию и резервирование норадреналина путем связывания его в гранулах (этот процесс опосредован также через Mg2+–зависимую Na+–К+–АТФ–азу, ответственную за обратный захват катехоламинов симпатическими нейронами), а в нервно–мышечных синапсах тормозит зависящее от поступления кальция высвобождение ацетилхолина. Существенное влияние на сокращения различных гладких мышц Mg2+ оказывает через торможение высвобождения гистамина из тучных клеток.
Антагонизмом с Са2+ связано снижение под действием ионов Mg2+ АДФ–индуцированной агрегации тромбоцитов и подавление других кальций–зависимых реакций в каскадах коагуляции крови.
Внутриклеточная биодоступность магния в организме регулируется рядом генов, контролирующих «сборку» и функционирование белков на поверхности клеточных мембран, выполняющих рольрецепторов или ионных каналов, среди которых TRPM–6 (Transient Receptor Potential Cation Channel) и TRPМ–7 являются наиболее важными. Белок TRPM–6 является ионным каналом, регулирующим транспорт двухвалентных катионов. TRPM–6, специфически взаимодействуя с другим Mg2+–проницаемым каналом – TRPM–7, способствует формированию («сборке») функциональных TRPM–6/TRPM–7 протеиновых комплексов на поверхности клеточных мембран. Экспериментальные и клинические исследования указывают, что изменения функционального состояния TRPM–7 под действием катехоламинов на фоне эмоционального стресса способствуют развитию внутриклеточного «дефицита магния».
Наиболее общий эффект воздействия Mg2+ на любую ткань заключается в том, что ионы Mg2+ стабилизируют структуру транспортной РНК, контролирующей общую скорость ресинтеза белков. Придефиците магния происходит дестабилизация транспортных – некодирующих РНК (увеличивается число дисфункциональных молекул РНК), что сопровождается снижением и замедлением скорости синтеза белковых структур клеток с относительным преобладанием процессов апоптоза (один из механизмов старения).
«Ионная гипотеза» старения предполагает наличие нарушений внутриклеточных механизмов обмена кальция/магния, ведущих к нарушению реологических свойств крови (повышенная агрегационная активность тромбоцитов, повышенная жесткость мембран эритроцитов и снижение их подвижности), повышению коагуляционного потенциала крови, атерогенезу, что характерно для людей пожилого возраста.
Биологические изменения, связанные со старением организма, обусловлены накоплением образующихся в результате истощения антиоксидантной системы на фоне «дефицита магния» свободных радикалов, которые вызывают окисление липидов низкой плотности, перекисное окисление липидов клеточных мембран, аминокислот в белках клеточных рецепторов (инсулинорезистентность). Y. Rayssiguier с коллегами (Франция, 1993) показали, что у животных с дефицитом магния увеличивается чувствительность к оксидативному стрессу (увеличение чувствительности тканей к окислению), сопровождающаяся увеличением продуктов перекисного окисления липидов, накопление которых способствует раннему «старению» клеток (в частности, эндотелиальных клеток).
Регуляцией электролитного баланса в клетке (наряду с влиянием на энергетический обмен) объясняется способность Мg2+ подавлять автоматизм, проводимость и возбудимость, увеличивать абсолютную и укорачивать относительную рефрактерность в тканях, обладающих всеми или какими–то из этих функций (например, в миокарде, миометрии и др.).
Принимая участие в высвобождении энергии, требующейся для функционирования мышечной клетки, и играя одну из главных ролей в сопряжении «сокращение – расслабление» миоцита, Mg2+ контролирует работу мышц, в частности, миокарда. Описанные механизмы играют важную роль в вазодилатирующей активности Mg2+, которая, возможно, опосредуется также через синтез циклической АМФ, являющейся мощным вазодилатирующим фактором, через подавляющее влияние на ренин–ангиотензин–альдостероновую систему и симпатическую иннервацию, а также через усиление натрийуреза вследствие повышения почечного кровотока посредством активации простациклина.
В эксперименте было показано ингибирующее влияние Mg2+ на выброс эндотелина, повышение которого, сопровождая тромбоз коронарной артерии при инфаркте миокарда, приводит к выраженной локальной вазоконстрикции в зоне ишемического риска. В этих исследованиях продемонстрирован гипокоагуляционный эффект Mg2+ через инактивацию протромбина, тромбина, фактора Кристмаса, проконвертина и плазменного компонента тромбопластина, а также его антиагрегантное действие на форменные элементы крови (эритроциты, тромбоциты, лейкоциты).
Среди метаболических функций, проявляющихся на уровне целого организма, необходимо подчеркнуть его роль в поддержании нормального липидного спектра, участие в обеспечении ответа тканей на инсулин и торможение гормона паращитовидной железы.
«Дефицит магния» – синдром, обусловленный снижением внутриклеточного содержания магния в различных органах и системах, множество симптомов которого свидетельствуют о мультиорганных нарушениях функционального состояния целостного организма в различных возрастных группах населения.
В числе основных клинических состояний, патогенетически связанных с «дефицитом магния», выделяют: метаболический синдром (МС), синдром хронической усталости, заболевания сердца (ИБС, хроническая сердечная недостаточность (ХСН), дилатационная кардиомиопатия), синдром дисплазии соединительной ткани (ДСТ), синдром удлиненного интервала Q–T, «синдром реперфузии», пролапс митрального клапана; бронхиальная астма, осложнения беременности и родов. Усугубление «дефицита магния» ассоциируется с рецидивами и ухудшением протекания этих заболеваний с развитием осложнений.
Многочисленные эпидемиологические исследования указывают, что в регионах, где пища и питьевая вода (жесткая вода) богаты магнием, значительно реже регистрируют пациентов с признаками МС (АГ, СД 2 типа, атерогенная дислипидемия, инсулинорезистентность), соединительнотканой дисплазией, синдромом удлиненного интервала Q–T. Низкий уровень свободного цитозольного магния и высокий уровень свободного внутриклеточного кальция ассоциируются с инсулинорезистентностью и компенсаторной гиперинсулинемией не только при АГ и СД 2 типа, но и при изолированной атерогенной дислипидемии, ожирении, гиперкоагуляционных состояниях, а также у пожилых людей.
Достоверное выявление недостатка магния представляет определенные трудности, в связи с чем его диагностика на практике нередко проводится на основании клинических признаков. Скрининговые исследования, проведенные в США, показали, что гипомагнезиемия (уровень сывороточного Мg2+ ниже 0,74 ммоль/л) встречается в 47,1% случаев, а клинические признаки «дефицита магния» выявляются более чем у 72% взрослых американцев [Wang H. 1994].
Гипомагнезиемия (по данным различных авторов) регистрируется в 7–11% среди госпитализированных больных, а у пациентов, находящихся в отделениях интенсивной терапии, в два раза чаще – в 25% случаев.
Однако статистика указывает, что 40% пациентов, находящихся в стационарах, имеют клинические признаки «дефицита магния», в 70% случаев «дефицит магния» регистрируется у больных в блоках интенсивной терапии, в 90% «дефицит магния» имеет место у больных с острым коронарным синдромом. В России, по данным эпидемиологических исследований, около 30% жителей получают в день менее 70% суточной дозы магния, при этом «дефицит магния» манифестируется значительно чаще у женщин, чем у мужчин .
По этиологии выделяют первичный и вторичный «дефицит магния».
Первичный (конституционный, латентный) «дефицит магния» – обусловлен дефектами в генах, ответственных за трансмембранный обмен магния в организме, клинически проявляется судорожным синдромом (спазмофилия), «конституционной тетанией» или «нормокальциевой тетанией» на фоне нормального содержания Mg2+ в сыворотке крови.
Вторичный дефицит магния – обусловлен социальными условиями и образом жизни, экологической обстановкой и особенностями питания, различными стрессорными ситуациями и заболеваниями.
Причины «магниевого дефицита»;, связанные с условиями жизни:
• Стресс – острый и хронический (особенно!!!): по данным Министерства здравоохранения и социального развития РФ, около 80% населения РФ проживают в условиях хронического стресса;
• Напряженная физическая работа и физическое перенапряжение;
• Гиподинамия:
• Злоупотребление алкоголем;
• Воздействие высоких температур (жаркий климат, горячие цеха, избыточное посещение парных бань);
• Беременность и лактация;
• Гормональная контрацепция.
Причины «магниевого дефицита», связанные с питанием:
• Потребление продуктов с ограниченным содержанием магния (мясо, птица, картофель, молоко и молочные продукты);
• Потребление продуктов с высоким содержанием животных жиров и белков, фосфора, кальция, которые угнетают (препятствуют) абсорбции Mg2+ в ЖКТ.
Причины «магниевого дефицита», связанные с патологическими процессами:
• Нарушения абсорбции в ЖКТ в связи с заболеваниями или возрастными изменениями (синдром малой абсорбции, хронический дуоденит, дисбактериоз, неспецифический язвенный энтероколит и т.д.);
• Сахарный диабет (инсулинорезистентность, гиперинсулинемия, гипергликемия, диабетическая нефропатия);
• Гиперкатехоламинемия;
• Гиперальдостеронизм;
• Гиперкортицизм;
• Гипертиреоз;
• Гиперпаратиреоз;
• Острый коронарный синдром;
• ХСН;
• Ожирение.
Ятрогенные причины «магниевого дефицита»:
• Передозировка сердечных гликозидов;
• Злоупотребление диуретиками;
• Гормональная котрацепция;
• Применение глюкокортикоидов;
• Цитостатическая терапия.
Следует отметить, что негативную роль в недостатке магния играет применение продуктов питания типа «Фаст–фуд».
Метаболический синдром – это комплекс метаболических нарушений и сердечно–сосудистых заболеваний, патогенетически взаимосвязанных, включающих инсулинорезистентность (ИР), нарушение толерантности к глюкозе (НТГ), атерогенную дислипидемию (повышение триглициридов – ТГ, липопротеидов низкой плотности – ЛПНП, снижение липопротеидов высокой плотности – ЛПВП), артериальную гипертензию (АГ), сочетающихся с абдоминальным ожирением. Эти нарушения чаще встречаются в пожилом возрасте, так что старение упоминается среди состояний, которые встречаются при метаболическом синдроме .
Малоизвестным является тот факт, что при всех этих состояниях были идентифицированы низкие уровни магния в клетках и повышенное содержание внутриклеточного кальция, хотя давно известно, что пациенты, страдающие СД, имеют низкие уровни магния в крови. В ряде работ были получены данные о низкой внутриклеточной концентрации магния в ассоциации с высоким уровнем кальция при АГ, также как и при других нарушениях, входящих в состав метаболического синдрома .